Browsed by
Month: January 2024

Researchers discover new protein connected to dementia with early onset.

Researchers discover new protein connected to dementia with early onset.

Researchers at the Medical Research Council (MRC) Laboratory of Molecular Biology in Cambridge, UK, have disproved earlier theories regarding frontotemporal dementia by discovering a novel protein called TAF15 that forms aggregated structures in cases of the illness. This finding adds something new to the small list of proteins known to aggregate in neurodegenerative diseases such as Alzheimer’s. This discovery not only opens the door to more sophisticated diagnostic methods and therapeutic approaches, but it also raises the intriguing possibility that TAF15 is connected to both motor neuron disease and frontotemporal dementia, providing new insights into these crippling conditions. The majority of neurodegenerative diseases, including dementia, are caused by proteins that aggregate into filaments called amyloids. Most of the time, researchers have identified the specific proteins that cause this aggregation, which allows them to concentrate on these proteins for diagnostic evaluations and treatment planning. Nevertheless, the precise protein causing frontotemporal dementia has not yet been identified by researchers in about 10% of cases. Researchers have now successfully determined the TAF15 protein’s aggregated structures in these specific instances.

The brain’s frontal and temporal lobes, which control emotions, personality, behavior, language comprehension, and speech, begin to degenerate with frontotemporal dementia. Compared to Alzheimer’s disease, this disorder usually shows symptoms earlier in life and is often diagnosed in people between the ages of 45 and 65. That can, however, also manifest in people of all ages. Scientists have discovered aggregated protein structures in their latest work, which could be a central point for future developments in diagnostic evaluations and treatments. Now that the essential protein and its structure have been found, scientists can concentrate on using it to identify and treat this particular type of frontotemporal dementia. This strategy is similar to those that are currently being used to target tau and amyloid-beta protein aggregates, which are characteristic characteristics of Alzheimer’s disease. The researchers examined protein aggregates in the brains of four patients suffering from this type of frontotemporal dementia at the atomic level resolution using sophisticated cryo-electron microscopy (cryo-EM) techniques. Up until now, researchers have linked this kind of dementia to other neurodegenerative illnesses and believed that a protein called FUS was in charge of aggregation.

The MRC Laboratory of Molecular Biology researchers were able to ascertain that the protein aggregates present in every brain had the same atomic structure by employing cryo-electron microscopy (cryo-EM). Remarkably, TAF15, a different protein, rather than FUS, was the guilty party. The researchers explained that this result was unexpected because, up until this study, neither the structural properties of TAF15 nor its involvement in the formation of amyloid filaments in neurodegenerative conditions had been identified. Through insights that were previously unattainable with earlier technologies, cryo-EM is revolutionizing our understanding of the molecular mechanisms underlying dementia and neurodegenerative diseases in a broader context. The complexity of cryo-electron microscopy, the researchers admitted, restricted their analysis to the brains of just four people. However, there is a chance that we will be able to develop instruments for screening hundreds of patient samples in order to determine the degree of these aberrant protein aggregates, now that we have a better understanding of the pivotal protein and its structure. A progressive loss of muscle control is a characteristic of motor neuron disease, which is also experienced by some people with frontotemporal dementia. In this study, two people with both conditions gave their brains for examination.

In these instances, the TAF15 protein was found in aggregated form in brain areas linked to motor neuron disease, according to the researchers. It is possible that TAF15 plays a role in the development of both frontotemporal dementia and motor neuron disease because two people who had both conditions had identical TAF15 aggregates. The investigators are currently investigating whether patients with motor neuron disease who do not show frontotemporal dementia symptoms have these aberrant TAF15 aggregates. This study further examined the possibility that additional abnormal proteins may be contributory to the neuropathological process of fronto temporal lobar degeneration and dementia (FTLD), stated James Giordano, PhD, MPhil, Pellegrino Center Professor of Neurology and Biochemistry at Georgetown University Medical Center. Giordano was not involved in this research and told Medical News Today. The investigation, which was well-conducted, examined the presence and amount of TAF protein, a variant abnormal protein constituent. TAF protein, along with other known abnormal proteins (like characteristic tau and alpha-synuclein entities), are found in and contribute to the neurodegenerative processes of frontotemporal dementia (FTLD). Dr. According to Giordano, this study importantly demonstrated that TAF protein is also present in the total proteinopathic constituency of the, albeit at a somewhat lesser concentration.

The results of the study further support and advance aspects of the amyloid hypothesis of neurodegenerative dementia, according to Dr. Giordano. He added that the discovery of the TAF variant might be a useful diagnostic marker in addition to a possible therapeutic target for the management of FTLD. Jennifer Bramen, M.D. D. Frontotemporal lobe dementia (FTD) is an emotionally taxing illness for which there is no known treatment, according to a senior research scientist at the Pacific Neuroscience Institute in Santa Monica, California, who was not involved in this study. Dr. Bramen came to the conclusion that FTD is a heterogeneous disease, which makes research on it more difficult. Increased patient treatment options may result from a deeper comprehension of various subtypes.

REFERENCES:

https://www.medicalnewstoday.com/articles/scientists-find-new-protein-linked-early-onset-dementia
https://www.sciencedaily.com/releases/2023/12/231206115845.htm
https://www.mcknights.com/news/clinical-news/scientists-identify-protein-linked-to-early-onset-dementia/
https://www.sciencealert.com/unexpected-protein-linked-to-early-onset-dementia-in-huge-discovery

For mental health medications that have been suggested by doctors worldwide are available here https://mygenericpharmacy.com/index.php?cPath=77_478

Supplements containing cocoa extract have been shown to improve older adults’ cognitive function.

Supplements containing cocoa extract have been shown to improve older adults’ cognitive function.

According to a recent randomized controlled trial, older adults who eat a poor-quality diet may benefit cognitively from taking daily supplements of cocoa extract. The authors found that older adults who regularly ate a high-quality diet showed no cognitive benefit from cocoa extract. Flavanols, which are abundant in cocoa, may reduce inflammation and oxidative stress. There is still need for more investigation into the possible cognitive advantages of cocoa. According to a recent study, older adults with routinely poor diet quality may benefit cognitively from taking daily cocoa extracts. Daily doses of cocoa extract did not appear to improve cognitive function in any of the study participants. The authors of the study note a borderline trend for people with inadequate diets, though. The COcoa Supplement and Multivitamin Outcomes Study (COSMOS), a randomized clinical trial (RCT) carried out at Brigham and Women’s Hospital in Boston, Massachusetts, comprised the clinical cohort of participants in this study. The benefits of taking a daily multivitamin-mineral supplement for cancer prevention and a daily cocoa extract supplement for cognitive function were examined in this larger trial, which involved 21,442 older Americans.

A portion of the research’s funding came from Mars Edge, an entity under Mars Inc. committed to the study of nutrition. Among the other donors were the U. S. The FDA, Pfizer Consumer Healthcare, Harvard Catalyst, Contract Pharmacal Corp., and the National Institutes of Health. The American Journal of Clinical Nutrition publishes the findings. The authors claim that there has been inconsistent research on the impact of cocoa on cognitive health. The small effect observed in this study for individuals with poor diet quality points to a need for more investigation. There were 573 older participants in the study, with a mean age of 69.6. Women made up 49.2 percent of this group. At the start of the study, each participant received a thorough cognitive evaluation, and over the following two years, they underwent follow-up testing. A daily supplement containing 500 mg of cocoa extract, which included 80 mg of the antioxidant epicatechin, was given to certain study participants, while control participants were given a placebo. A total of 492 individuals finished the two-year evaluations. After two years, no improvement in cognition was seen in the group as a whole. Specifically, those taking cocoa supplements showed no improvement in executive function, attention, episodic memory, or global cognition when compared to those receiving a placebo. Flavanols, a subclass of flavonoids that are naturally occurring in plants, fruits, and vegetables, are abundant in cocoa. Our trial results provide insight into the cognitive benefits of cocoa extract, said Dr. Chirag M. Vyas, the study’s first author.

The mechanism through which flavanols may improve cognition in individuals with poor diets is not explained by the study, but Dr. Vyas proposed the following theory: by lowering oxidative stress and inflammation, cocoa flavanols may improve cognitive function outcomes in older adults with poor diet quality. Studies have linked systemic levels of inflammation linked to cognitive aging and elevated oxidative stress in older adults with poor diets. Dr. According to Vyas’ theory, eating cocoa flavanols may lessen cognitive stressors and may also be influencing other neuroprotective processes. Over the course of a 12-week follow-up period, a 2021 trial found that cocoa flavonoids had a positive impact on cognitive aging. In addition to other plant compounds, nutritionist Kristin Kirkpatrick, who was not involved in the study, told MNT I advise clients to get plenty of flavonoids. and frequently suggest dark and cocoa chocolate as a fantastic choice with a wide range of culinary applications. Dr. According to Vyas, more investigation is required to clarify the weak link found in the study. Regarding the distinction between cocoa extract and actual cocoa or chocolate, Dr. Vyas replied, There is no simple answer to this question.. Due to compositional differences, the precise effects of chocolate, cocoa powder, and extract on cognitive health may differ, according to him. For instance, a particular compound is isolated to produce cocoa extract.

Even though the COSMOS cocoa extract supplement contains all of the naturally occurring bioactive components of the cocoa bean, we were unable to evaluate the effects of various formulations, separate cocoa extract components, or varying cocoa flavanol concentrations in this trial on cognitive benefits. According to Kirkpatrick, if someone is interested in the flavonoid benefits of cocoa beans, they should consume dark chocolate that is at least 75% cacao or use pure cocoa in their regular meals and snacks, such as topping applesauce or oatmeal with it. would supply that. Customers should search for that 100 percent cocoa, as pure raw cocoa usually contains no added sugar or fat, according to Kirkpatrick. You can use cocoa in a variety of ways, like adding it to yogurt or creating desserts like chocolate mousse. she continued. Dr. Vyas stated that he is not sure if he would advise consuming cocoa to improve cognitive function. According to the results of our trial, using supplements containing cocoa extract did not appear to improve cognitive function overall in older adults, he said. He is hesitant to guarantee a significant benefit just yet, even though the study indicates that older individuals who do not follow a healthy, balanced diet may benefit from consuming cocoa. Notwithstanding these encouraging results, more research is necessary to fully comprehend how cocoa flavanols affect cognition, particularly in more diverse populations and among those with lower-quality diets.

REFERENCES:

https://www.medicalnewstoday.com/articles/cocoa-extract-supplement-improves-cognition-older-adults
https://medicalxpress.com/news/2023-12-cocoa-supplement-benefits-cognition-older.html
https://www.sciencedaily.com/releases/2023/12/231207151255.htm
https://www.healthline.com/health-news/cocoa-extract-may-help-reduce-risk-of-cognitive-decline-in-older-adults

For medications that have been suggested by doctors worldwide are available here https://mygenericpharmacy.com